DeepMind

Privacy in Image Classification Models Informed Attacks and Practical Defences

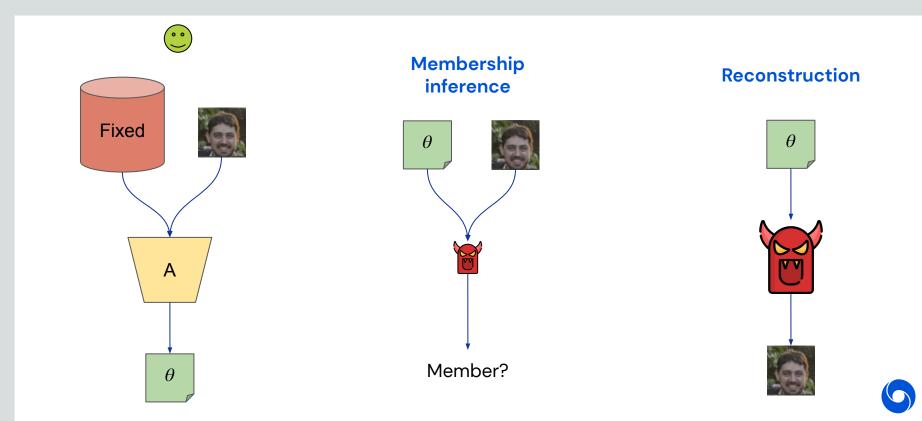
Borja Balle

Privacy-Preserving AI @ AAAI

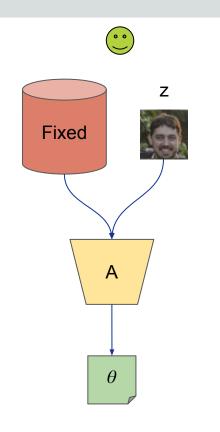
February 13, 2023

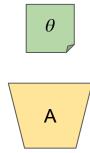
Balle, Cherubin, Hayes. "Reconstructing Training Data with Informed Adversaries." IEEE Security & Privacy (2022). [arxiv:2201.04845] De, Berrada, Hayes, Smith, Balle. "Unlocking High-Accuracy Differentially Private Image Classification through Scale." Pre-print (2022). [arxiv:2204.13650]

Spectrum of Privacy Attacks



Threat Model: Informed Adversary





model

by model developer

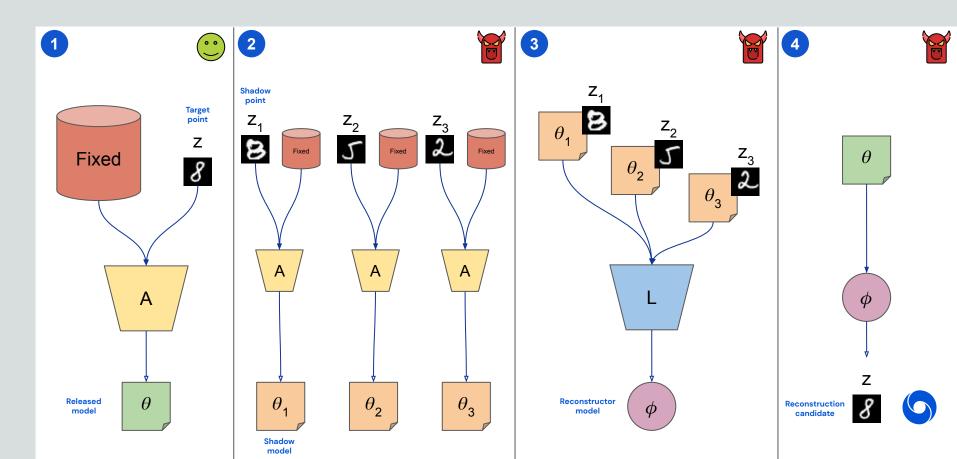
Adversary knows parameters of released

Adversary knows training algorithm used

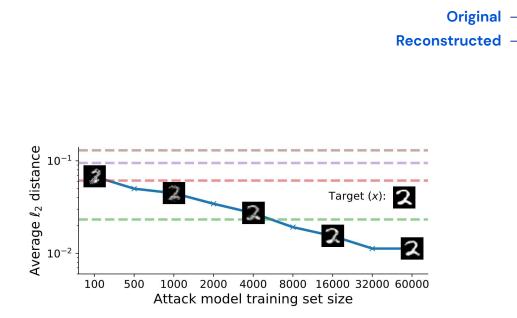
Adversary knows all data except one point

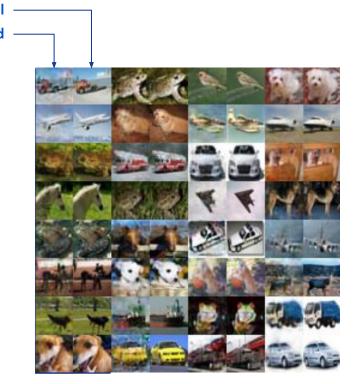
Adversary has prior knowledge of z (eg. samples from same distribution)

A Learning-Based Reconstruction Attack



Successful Reconstructions





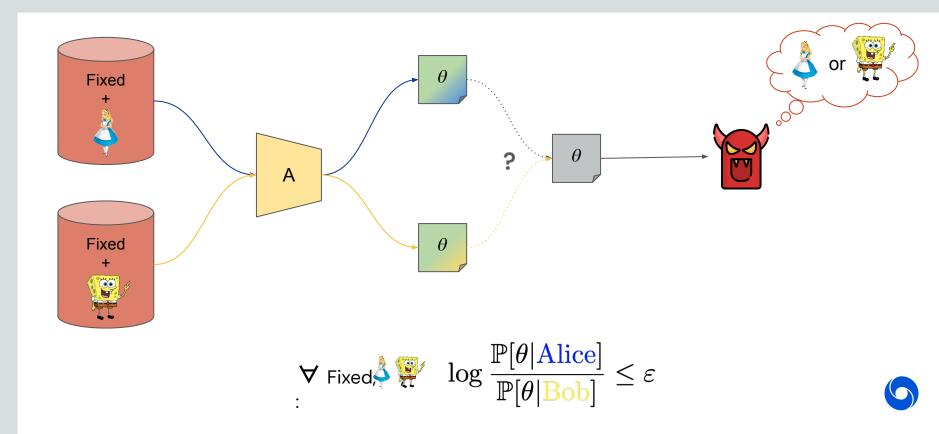
Key Takeaways

- Successfully scaled attack on fully connected and convolutional networks on MNIST and CIFAR-10 with up to 100K parameters
- Reconstructions improve as target model becomes larger
- Attack is robust to changes in training procedure (optimizer, hyper-parameters, etc)
- Reconstruction works even under mini-batch randomness
- Success is not a byproduct of overfitting
- Full access to model parameters is not necessary

Mitigations are required to safely deploy models trained on private data

Differential Privacy (In a Nutshell)

Dwork et al. Calibrating Noise to Sensitivity in Private Data Analysis TCC (2006)



Private Deep Learning with DP-SGD

Abadi et al. Deep learning with differential privacy CCS (2016)

$$w^{(t+1)} = w^{(t)} - \eta_t \left(\frac{1}{|B|} \sum_{i \in B} \text{clip}_C \left(\nabla l_i(w^{(t)}) \right) + \frac{\sigma C}{|B|} \xi \right)$$
Privatized mini-batch gradient
Clip gradient per sample to norm C Add Gaussian noise

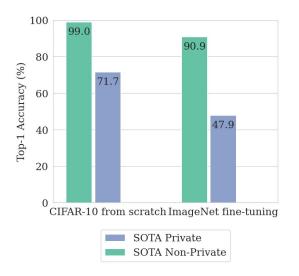
The total privacy loss ε of the training procedure:

- Increases with number of iterations T
- Decreases with added noise σ
- Increases with batch size |B|

Challenges of DP-SGD

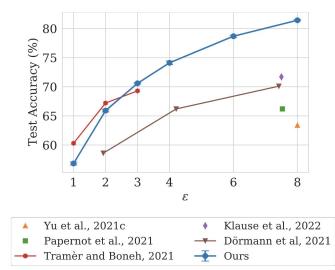
Bounded privacy budget ε

- Tradeoff between # iterations & amount of noise
- Different hyper-parameter & regularization settings
- Clipping per sample + Noise
 - Privatized gradient is biased and has high variance
- Making standard models work
 - L2 norm of noise scales with model dimension
 - Cannot use batch normalization



Improving SOTA on CIFAR-10

CIFAR-10 classification under (8, 10 ⁻⁵)-DP	Accuracy (%)	
	Validation	Training
Baseline (WRN-40-4 w/o batch normalization)	50.8 (0.7)	51.2 (0.7)
+ Group normalization (16 groups)	66.3 (0.6)	67.9 (0.3)
+ Larger batch size (batch size of 4096)	70.0 (0.6)	73.4 (0.9)
+ Weight standardization	71.2 (1.0)	74.7 (1.3)
+ Augmentation multiplicity (16 augmentations)	78.4 (0.9)	79.4 (0.9)
+ Parameter averaging (exponential moving average)	79.7 (0.2)	81.5 (0.2)

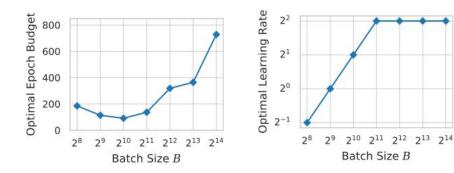


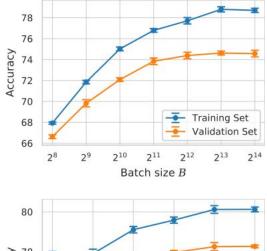
- Leverage ideas that make non-private training faster
- Improve network trainability and convergence
- Pack more compute per model update
- Careful hyper-parameter tuning

→ Better accuracy with larger, standard models

Insights Into Hyper-Parameter Tuning

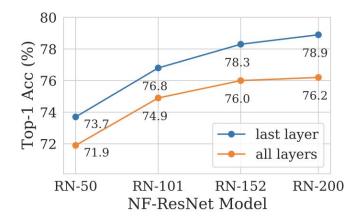
- Clipping norm has little effect (eg. set C=1)
- Use constant learning rates (ie. no annealing)
- Very large batch sizes (use virtual batching)
- Add augmentation multiplicity once benefits from larger batch size saturate
- Optimal epoch budget and learning rate depend on batch size (re-tune for each batch size)

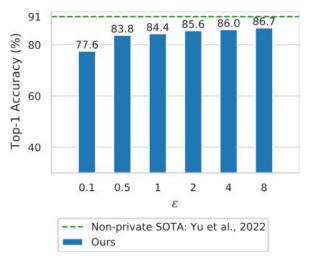






Closing the Public-Private Gap with Pre-Trained Models





- Pre-train on JFT and fine-tune with DP-SGD
- Accuracy keeps improving with model size
- Fine-tuning last layer better on ImageNet, all layers better when distribution shift is larger (eg. Places365)
- → Exceed accuracy of non-private ResNet-50 at ε =1

Conclusion

- Standard image classification models contain a "fingerprint" of each individual training example which can be extracted and used to reconstruct training examples.
- 2. Differential privacy provides an effective mitigation, and its accuracy degradation can be minimized by combining large models with tools to improve trainability and convergence.

https://github.com/deepmind/jax_privacy

DeepMind

Thank you!

Questions?