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The Power of Negative Thinking

Privacy attacks play an essential role in
privacy research

Reidentification

(Sweeney)

(NS08)

Highlighted the failures of
deidentification

Reconstruction

(US Census Bureau)

(DN03)

Inspired invention and 
adoption of differential privacy

Membership inference

(H+08)

(SSSS16)

Dominant paradigm in 
modern ML



Differential Privacy (DMNS06)

Data Output

𝑋

Algorithm Attacker

ℳ 𝑋

The attacker cannot even tell if       is in the sample 

𝑋! ℳ 𝑋!

Definition: ℳ is 𝜀-differentially private if
for every pair 𝑋, 𝑋! differing on one sample

and every set 𝐸 of potential outcomes
ℳ 𝑋 ≈" ℳ 𝑋!

Close as distributions

Randomized
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Differential Privacy (DMNS06)

Data Output

𝑋

Algorithm Attacker

ℳ 𝑋

The attacker cannot even tell if       is in the sample 

𝑋! ℳ 𝑋!

Definition: ℳ is 𝜀-differentially private if
for every pair 𝑋, 𝑋! differing on one data point

and every set 𝑇 of potential outcomes
ℙ ℳ 𝑋 ∈ 𝑇 ≤ 𝑒" ⋅ ℙ ℳ 𝑋! ∈ 𝑇

Randomized



Differential privacy has many desirable features
• Enables rigorous mathematical proofs
• Quantitative and composable
• Not tied to any specific application
• Not reliant on assumptions about the data
• Not reliant on assumptions about the attacker

Differential Privacy (DMNS06)

Definition: ℳ is 𝜀-differentially private if
for every pair 𝑋, 𝑋! differing on one data point

and every set 𝑇 of potential outcomes
ℙ ℳ 𝑋 ∈ 𝑇 ≤ 𝑒" ⋅ ℙ ℳ 𝑋! ∈ 𝑇



Differential Privacy Deployments

Gboard PredictionCensus Redistricting Data

There are now many deployments systems
with rigorous guarantees of differential privacy

𝜀 = 2.96 (94.9%)* 𝜀 = 1.27 (78.1%)*

But their quantitative guarantees are underwhelming

Do these algorithms provide 
privacy in the real world?

𝜀 might underestimate privacy
• DP is challenging to prove
• Real data is not worst-case
• Real attackers are not omniscient

… but it might not!



This Talk
1. Example: auditing DP-SGD (JUO20)

a. What is DP-SGD? 
b. Membership inference attacks
c. Improved MI for DP-SGD

2. Recent work and future directions

Auditing (Differentially) Private Algorithms

Privacy attacks should play an essential role in 
testing, quantifying, and interpreting privacy claims

Goal: empirically audit real-world 
privacy costs of (DP) algorithms
• Analogous to the role of 

cryptanalysis in cryptography

Challenge: auditing requires 
developing stronger attacks
• Existing attacks typically fail 

even for very large values of 𝜀!



DP-SGD

𝜃!

𝑔 = ∇ℒ 𝜃!; 𝑥!

𝜃!"#

SGD

Differentially private stochastic gradient descent (DP-SGD) 
is the primary practical tool for DP machine learning
• Introduced and analyzed by (SCS13, BST14)
• First used for practical deep learning by (A+16)



DP-SGD

Differentially private stochastic gradient descent (DP-SGD) 
is the primary practical tool for DP machine learning
• Introduced and analyzed by (SCS13, BST14)
• First used for practical deep learning by (A+16)

𝜃!

𝑔 = ∇ℒ 𝜃!; 𝑥!

(𝑔 = )𝑔 +𝒩 0, 𝐶𝜎$
𝜃!"#

clipping radius 𝐶

)𝑔 = Clip% 𝑔!

Algorithm:
For 𝑡 = 1,2, … , 𝑇:
• 𝑥! ← random example
• 𝑔 ← ∇ℒ& 𝜃!
• )𝑔 ← Clip% 𝑔 and (𝑔 ← )𝑔 + 𝒩 0, 𝐶$𝜎$𝕀
• 𝜃! ← 𝜃!'# − 𝜂 ⋅ (𝑔

Output: 𝜃(

Data: 𝑥#, … , 𝑥)
Hyperparameters:
• Clipping norm 𝐶
• Noise multiplier 𝜎
• Iteration count 𝑇

• Initial model 𝜃*
• Learning rate 𝜂
• Loss ℒ

DP-SGD



DP-SGD

Very challenging to precisely analyze the privacy of DP-SGD
• Extensive body of literature giving progressively tighter analyses 

(A+16, M17, BDRS19, DRS20 …)
• Typically used with 𝜀 ≈ 2 to get reasonably utility
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)𝑔 = Clip% 𝑔!

Algorithm:
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• 𝑥! ← random example
• 𝑔 ← ∇ℒ& 𝜃!
• )𝑔 ← Clip% 𝑔 and (𝑔 ← )𝑔 + 𝒩 0, 𝐶$𝜎$𝕀
• 𝜃! ← 𝜃!'# − 𝜂 ⋅ (𝑔

Output: 𝜃(

Data: 𝑥#, … , 𝑥)
Hyperparameters:
• Clipping norm 𝐶
• Noise multiplier 𝜎
• Iteration count 𝑇

• Initial model 𝜃*
• Learning rate 𝜂
• Loss ℒ

DP-SGD



How private is DP-SGD?

2014

2016
2020

How much more can we 
improve 𝜀 for DP-SGD?

𝜀 → ∞
no privacy

𝜀∗

𝜀 = 0
Perfect privacy

Can we find 𝜀∗ using auditing?

𝜀∗ = .24

1. No, not in general



How private is DP-SGD?

2014

2016
2020

Current bounds are nearly 
tight in the worst case

𝜀 → ∞
no privacy

𝜀∗

𝜀 = 0
Perfect privacy

Lower bound

Can we find 𝜀∗ using auditing?

𝜀∗ = .24

1. No, not in general
2. We wouldnt learn much
3. It’s not what we really want



DP-SGD

DP-SGD is (mostly) been analyzed in a pessimistic model
• Worst-case over data
• Worst-case over hyperparameters
• Worst-case over model architecture and loss
• Adversary sees all iterates 𝜃", 𝜃#, … , 𝜃$

𝜃!

𝑔 = ∇ℒ 𝜃!; 𝑥!

(𝑔 = )𝑔 +𝒩 0, 𝐶𝜎$
𝜃!"#

clipping radius 𝐶

)𝑔 = Clip% 𝑔!

Algorithm:
For 𝑡 = 1,2, … , 𝑇:
• 𝑥! ← random example
• 𝑔 ← ∇ℒ& 𝜃!
• )𝑔 ← Clip% 𝑔 and (𝑔 ← )𝑔 + 𝒩 0, 𝐶$𝜎$𝕀
• 𝜃! ← 𝜃!'# − 𝜂 ⋅ (𝑔

Output: 𝜃(

Data: 𝑥#, … , 𝑥)
Hyperparameters:
• Clipping norm 𝐶
• Noise multiplier 𝜎
• Iteration count 𝑇

• Initial model 𝜃*
• Learning rate 𝜂
• Loss ℒ

DP-SGD



How private is DP-SGD?

2014

2016
2020

Can we use attacks to 
understand the privacy of 

DP-SGD in realistic use cases?

𝜀 → ∞
no privacy

𝜀∗

𝜀 = 0
Perfect privacy

worst-case analysis real deployments

Lower bound



Membership-Inference Attacks
Output 

{IN, OUT}

Data Alg Attacker

ℳ

An attacker who observes the output of the algorithm infers 
whether a target individual is IN or OUT of the data
• Membership in the dataset can be sensitive information on its own
• Membership can be a building block for other privacy violations

𝒜

𝑋?@A , 𝑡

Auxiliary knowledge

Target 𝑡

𝑋BC

𝑋?@A



Membership-Inference Attacks
Output 

{IN, OUT}

Data Alg Attacker

ℳ

If the algorithm is 𝜀-differentially private attack, then no 
membership-inference attack is too accurate
• For every attacker ℙ 𝒜 ℳ 𝑋%& = IN ≤ 𝑒' ⋅ ℙ 𝒜 ℳ 𝑋()* = IN

• If the mechanism satisfies 𝜀-DP then +,-+&
.

≥ /01 '
#-/01 '

𝒜

𝑋?@A , 𝑡

Auxiliary knowledge

1 − FN FP

Target 𝑡

𝑋BC

𝑋?@A



Membership-Inference Attacks
Output 

{IN, OUT}

Data Alg Attacker

ℳ

If there is an accurate membership-inference attack, then the 
algorithm is not 𝜀-differentially private for small enough 𝜀
• For every attacker ℙ 𝒜 ℳ 𝑋%& = IN ≤ 𝑒' ⋅ ℙ 𝒜 ℳ 𝑋()* = IN

• If the mechanism satisfies 𝜀-DP then 𝜀 ≥ ln #2+&
+,

𝒜

Auxiliary knowledge

Target 𝑡

𝑋?@A , 𝑡

𝑋BC

𝑋?@A

1 − FN FP



Membership-Inference Attacks
Output 

{IN, OUT}

Data Alg Attacker

ℳ

Membership-inference is a hypothesis testing problem
• Attacker receives an output drawn from one of two 

distributions: ℳ 𝑋%& or ℳ 𝑋()*
• If the attacker knows the two distributions, the testing problem 

is solved by the Neyman-Pearson Lemma

𝒜

Auxiliary knowledge

Target 𝑡

𝑋?@A , 𝑡

𝑋BC

𝑋?@A



Membership-Inference Attacks
Output 

{IN, OUT}

Data Alg Attacker

ℳ

If ℳ is not 𝜀-DP then there then there will be a MI attack,      
but not necessarily a realistic one
• Might apply only to one specific dataset 𝑋()* and target 𝑡
• Might require attacker to know 𝑋()* and 𝑡 exactly

𝒜

Auxiliary knowledge

Target 𝑡

𝑋?@A , 𝑡

𝑋BC

𝑋?@A



Membership-Inference Attacks
Output 

𝑋BC

{IN, OUT}𝑋?@A

Data Alg Attacker

ℳ

MI gives a framework for interpolating between realistic             
and worst-case attackers
• Dataset 𝑋()* and target 𝑡 are chosen from a realistic distribution 𝒟
• Attacker only has realistic auxiliary knowledge 𝑎𝑢𝑥
• Attacker should not depend on the precise details of ℳ
• Makes the hypothesis testing problem more challenging

𝒜

Auxiliary knowledge

Target 𝑡

𝑎𝑢𝑥, 𝑡

Distribution

𝒟



Membership-Inference Attacks

Long history of realistic membership-inference attacks both 
in theory and in practice
• First observed in GWAS datasets in 2008! (H+08)
• Formalized and analyzed via hypothesis testing (SOHJ09)
• Connected to lower bounds in differential privacy (DSSUV15)
• Applied to complex neural networks (SSSS16, YGFJ18)

Output 

𝑋BC

{IN, OUT}𝑋?@A

Data Alg Attacker

ℳ

𝒜

Auxiliary knowledge

Target 𝑡

𝑎𝑢𝑥, 𝑡

Distribution

𝒟



2014

2016
2020

Can we use MI attacks to 
understand the privacy of 

DP-SGD in real deployments?

𝜀 → ∞
no privacy

𝜀∗

𝜀 = 0
Perfect privacy

worst-case analysis real deployments

Lower bound

Standard MI attacks

Membership-Inference Attacks on DP-SGD



Standard MI attacks (SSSS17, YGFJ18, JWKGE21) are 
ineffective against DP-SGD even with large 𝜀
• Perform almost no better than random guessing even for 𝜀 ≈ 100

Membership-Inference Attacks on DP-SGD

𝜃!

𝑔 = ∇ℒ 𝜃!; 𝑥!

(𝑔 = )𝑔 +𝒩 0, 𝐶𝜎$
𝜃!"#

clipping radius 𝐶

)𝑔 = Clip% 𝑔!

Algorithm:
For 𝑡 = 1,2, … , 𝑇:
• 𝑥! ← random example
• 𝑔 ← ∇ℒ& 𝜃!
• )𝑔 ← Clip% 𝑔 and (𝑔 ← )𝑔 + 𝒩 0, 𝐶$𝜎$𝕀
• 𝜃! ← 𝜃!'# − 𝜂 ⋅ (𝑔

Output: 𝜃(

Data: 𝑥#, … , 𝑥)
Hyperparameters:
• Clipping norm 𝐶
• Noise multiplier 𝜎
• Iteration count 𝑇

• Initial model 𝜃*
• Learning rate 𝜂
• Loss ℒ

DP-SGD



Auditing DP-SGD (JUO20)

We show that worst-case bounds approximately capture 
the privacy of DP-SGD in realistic use cases
• Novel MI attacks based on (DSSUV15) and data poisoning (GDGG17)
• Within 5x of provable bounds in many scenarios
• Incorporated into TensorFlow Privacy testing module
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𝑔 = ∇ℒ 𝜃!; 𝑥!

(𝑔 = )𝑔 +𝒩 0, 𝐶𝜎$
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• 𝑥! ← random example
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• )𝑔 ← Clip% 𝑔 and (𝑔 ← )𝑔 + 𝒩 0, 𝐶$𝜎$𝕀
• 𝜃! ← 𝜃!'# − 𝜂 ⋅ (𝑔

Output: 𝜃(

Data: 𝑥#, … , 𝑥)
Hyperparameters:
• Clipping norm 𝐶
• Noise multiplier 𝜎
• Iteration count 𝑇

• Initial model 𝜃*
• Learning rate 𝜂
• Loss ℒ

DP-SGD



2014

2016
2020

Can we use MI attacks to 
understand the privacy of 

DP-SGD in real deployments?

𝜀 → ∞
no privacy

𝜀∗

𝜀 = 0
Perfect privacy

worst-case analysis real deployments

Lower bound

Standard MI attacks

Membership-Inference Attacks on DP-SGD

Our MI attack



Output 

𝑋BC

{IN, OUT}𝑋?@A

Data Alg Attacker

DP-SGD

Basic MI attacks use random targets 
from benchmark datasets
• Pick some benchmark dataset 𝑋
• Let 𝑋()* be a random subset of 𝑋
• Let 𝑋%& = 𝑋()* + 𝑡 for random 𝑡 ∈ 𝑋
• Examine ℒ 𝜃; 𝑡 on the model 𝜃

𝒜

Auxiliary knowledge

Target 𝑡

𝑎𝑢𝑥, 𝑡

Distribution

Auditing DP-SGD (JUO20)

benchmark 
dataset

Is ℒ 𝜃; 𝑡 ≤ 𝜏?

FMNIST subsample
2-layer NN



Output 

𝑋BC

{IN, OUT}𝑋?@A

Data Alg Attacker

DP-SGD

Can get some improvement by 
carefully selecting 𝑡
• Pick some benchmark dataset 𝑋
• Let 𝑋()* be a random subset of 𝑋
• Let 𝑋%& = 𝑋()* + 𝑡∗ for best 𝑡∗ ∈ 𝑋
• Examine ℒ 𝜃; 𝑡 on the model 𝜃

𝒜

Auxiliary knowledge

Target 𝑡

𝑎𝑢𝑥, 𝑡

Distribution

Auditing DP-SGD (JUO20)

benchmark 
dataset

Is ℒ 𝜃; 𝑡 ≤ 𝜏?

FMNIST subsample
2-layer NN



Auditing DP-SGD via Data Poisoning (JUO20)

𝑋)*+ 𝑋,-

How can we inject (realistic) points into the dataset      
that have a significant influence on the models

“1” “0”



Output 

𝑋BC

{IN, OUT}𝑋?@A

Data Alg Attacker

DP-SGD

Improvement 1: Use data poisoning 
to choose construct a target 𝑡∗
• Pick some benchmark dataset 𝑋
• Let 𝑋()* be a random subset of 𝑋
• Let 𝑋%& = 𝑋()* + 𝑡∗ where 𝑡∗ is 

based on standard data poisoning
• Check whether poisoning succeeded

𝒜

Auxiliary knowledge

Target 𝑡

𝑎𝑢𝑥, 𝑡

Distribution
benchmark 

dataset
Is ℒ 𝜃; 𝑡 ≤ 𝜏?

Auditing DP-SGD via Data Poisoning (JUO20)

FMNIST subsample
2-layer NN



Clipping gradients is a reasonably effective defense against 
off-the-shelf data poisoning attacks
• Poisoning attacks were designed for SGD, not DP-SGD

𝜃!

𝑔 = ∇ℒ 𝜃!; 𝑥!

(𝑔 = )𝑔 +𝒩 0, 𝐶𝜎$
𝜃!"#

clipping radius 𝐶

)𝑔 = Clip% 𝑔!

Algorithm:
For 𝑡 = 1,2, … , 𝑇:
• 𝑥! ← random example
• 𝑔 ← ∇ℒ& 𝜃!
• )𝑔 ← Clip% 𝑔
• 𝜃! ← 𝜃!'# − 𝜂 ⋅ )𝑔 +𝒩 0, 𝐶$𝜎$𝕀

Output: 𝜃(

Data: 𝑥#, … , 𝑥)
Hyperparameters:
• Clipping norm 𝐶
• Noise multiplier 𝜎
• Iteration count 𝑇

• Initial model 𝜃*
• Learning rate 𝜂
• Loss ℒ

DP-SGD

Auditing DP-SGD via Data Poisoning (JUO20)



Output 

𝑋BC

{IN, OUT}𝑋?@A

Data Alg Attacker

DP-SGD

Improvement 2: Tailor data poisoning 
attack to DP-SGD
• Pick some benchmark dataset 𝑋
• Let 𝑋()* be a random subset of 𝑋
• Let 𝑋%& = 𝑋()* + 𝑡∗ where 𝑡∗ is        

based on clipping-aware poisoning (JUO20)
• Check whether poisoning succeeded

𝒜

Auxiliary knowledge

Target 𝑡

𝑎𝑢𝑥, 𝑡

Distribution
benchmark 

dataset
Is ℒ 𝜃; 𝑡 ≤ 𝜏?

Auditing DP-SGD via Novel Poisoning (JUO20)

FMNIST subsample
2-layer NN



Auditing DP-SGD (JUO20)

We show that worst-case bounds approximately capture 
the privacy of DP-SGD in realistic use cases
• Novel MI attacks based on (DSSUV15) and data poisoning (GDGG17)
• Within 5x of provable bounds in many scenarios
• Incorporated into TensorFlow Privacy testing module

𝜃!

𝑔 = ∇ℒ 𝜃!; 𝑥!

(𝑔 = )𝑔 +𝒩 0, 𝐶𝜎$
𝜃!"#

clipping radius 𝐶

)𝑔 = Clip% 𝑔!

Algorithm:
For 𝑡 = 1,2, … , 𝑇:
• 𝑥! ← random example
• 𝑔 ← ∇ℒ& 𝜃!
• )𝑔 ← Clip% 𝑔
• 𝜃! ← 𝜃!'# − 𝜂 ⋅ )𝑔 +𝒩 0, 𝐶$𝜎$𝕀

Output: 𝜃*, 𝜃#, … , 𝜃(

Data: 𝑥#, … , 𝑥)
Hyperparameters:
• Clipping norm 𝐶
• Noise multiplier 𝜎
• Iteration count 𝑇

• Initial model 𝜃*
• Learning rate 𝜂
• Loss ℒ

DP-SGD



Auditing (Differentially) Private Algorithms

Privacy attacks should play an essential role in 
testing, quantifying, and interpreting privacy in the real world

Goal: empirically audit real-world 
privacy costs of (DP) algorithms
• Analogous to the role of 

cryptanalysis in cryptography

Challenge: auditing requires 
developing stronger attacks
• Existing attacks typically fail 

even for very large values of 𝜀!

This Talk
1. Example: auditing DP-SGD (JUO20)

a. What is DP-SGD? 
b. Membership inference attacks
c. Improved MI for DP-SGD

2. Recent work and future directions



Building on our work

Auditing continual learning
• Most attacks are designed for standalone models
• Modern machine learning pipelines continually update models in 

response to new data or new tasks
• Can extend MI attacks to audit learning pipelines (JWOUG23)



Building on our work

Auditing federated learning
• Many systems for federated learning actually do reveal more than 

the final output (e.g. some of the iterates 𝜃", 𝜃#, … , 𝜃$)
• Can use auditing to explore how different systems threat models 

lead to different privacy levels (NSTPC21)



Building on our work

Using auditing to detect bugs
• Not all privacy proofs and implementations are correct
• Auditing methods found a bug in a published paper (TTSSJC22)



Building on our work

Using auditing for algorithm selection
• Some algorithms have tighter analyses than others
• In some case the algorithm with the smallest provable 𝜀 is not 

the one that is most resistant to our attacks (MMPST21)
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Privacy attacks should play an essential role in 
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Can we audit models instead of algorithms?

How can we audit a model in the wild, without knowing 
exactly how it was trained?
• What would the algorithm have returned on counterfactual data?
• How can we tell if something is a privacy violation or a lucky guess?
• Easier for language models (C+19, C+21) than predictive models



Can we avoid Goodhart’s Law?

When a measure becomes a target, it 
ceases to be a good measure

Goal: empirically audit real-world 
privacy costs of (DP) algorithms
• Analogous to the role of 

cryptanalysis in cryptography

Challenge: auditing requires 
developing stronger attacks
• Attacks need to be strong even 

once they become a target



Can we use auditing methods to inform the way we design 
and analyze private algorithms? 
• Can inform the design of novel algorithms
• Can inform and validate relaxed privacy models

𝜃!

𝑔 = ∇ℒ 𝜃!; 𝑥!

(𝑔 = )𝑔 +𝒩 0, 𝐶𝜎$
𝜃!"#

clipping radius 𝐶

)𝑔 = Clip% 𝑔!

Algorithm:
For 𝑡 = 1,2, … , 𝑇:
• 𝑥! ← random example
• 𝑔 ← ∇ℒ& 𝜃!
• )𝑔 ← Clip% 𝑔
• 𝜃! ← 𝜃!'# − 𝜂 ⋅ )𝑔 +𝒩 0, 𝐶$𝜎$𝕀

Output: 𝜃*, 𝜃#, … , 𝜃(

Data: 𝑥#, … , 𝑥)
Hyperparameters:
• Clipping norm 𝐶
• Noise multiplier 𝜎
• Iteration count 𝑇

• Initial model 𝜃*
• Learning rate 𝜂
• Loss ℒ

DP-SGD

Auditing: from practice to theory?



Thank You!

Auditing (Differentially) Private Algorithms

Privacy attacks should play an essential role in 
testing, quantifying, and interpreting privacy in the real world

Goal: empirically audit real-world 
privacy costs of (DP) algorithms
• Analogous to the role of 

cryptanalysis in cryptography

Challenge: auditing requires 
developing stronger attacks
• Existing attacks typically fail 

even for very large values of 𝜀!


