Do machine learning systems meet the requirements of legal privacy standards?

Kobbi Nissim

Georgetown University

The Data Co-Ops project https://datacoopslab.org

[PPAI, January 2023]

Machine learning systems

• The use of ML system to process personal information is growing at a rapid pace

- Credit score
- Assisting legal decision making
- Assisting hiring decisions •
- Academic performance evaluation •
- Online advertising and personalized content delivery
- These systems bring many benefits ...
 ... and also raise concerns about informational harms: privacy, discrimination and bias, misinformation, political polarization, social fragmentation ...

A small sample of privacy risks in machine learning systems

- Recommendation systems [Calandrino et al. 2017]
 - Can infer information about the individual's behavior by mimicking the behavior of a target individual and then monitoring changes in a recommendation system's outputs
- Machine learning models unintentionally memorize parts of their training data and, in turn, leak secret personal information when queried [Carlini et al. 2019]
 - Auto-completion of the sentence "my social-security number is" can reveal someone's SSN
- Membership attacks [Homer et al. 2008, ...]
 - given a data record and black-box access to a model, determine if the record was in the model's training dataset [Shokri et al. 2017]

But we have ...

New privacy laws

- General Data Protection Regulation
- California Consumer Privacy Act
- California Privacy **Rights Act**

...

Strong PETs

- Encryption
- Secure multiparty computing
- Differential privacy
- Blockchain

Do machine learning systems meet the requirements of legal privacy standards?

Do we even understand the question?

Do machine learning systems meet legal privacy standards?

- Hard to reason about!
- Legal and technical definitions of privacy protection have evolved in diverging ways [N, Wood 2018]

- Key gaps:
 - Mathematical rigor vs. flexibility
 - Generality of protection afforded
 - Reactive vs. proactive
 - Privacy expectations vis-a-vis scientific understandings of privacy and reality of how data is used
 - Relationships to normative expectations of privacy

Do machine learning systems meet legal privacy standards?

- Design choices are frequently made opaque
 - Algorithms underlying decision support used in US courts have been considered proprietary and not subject to scrutiny [Angwin, Larson, Mattu & Kirchner 2016]
- Design of sociotechnical systems is subject to minimal regulation and oversight
 - Protections in place are widely considered to be inadequate [Barocas & Selbst 2014], [Citron & Pasquale 2014]
- Extremely large number of decisions are made
 - Even if only a small fraction required human review, they would quickly overwhelm judiciary or administrative systems

A concrete example: The GDPR notion of anonymity

Based on joint work with: Micah Altman, Aloni Cohen, and Alexandra Wood

Data anonymization

• Many privacy and data protection laws around the globe conceive of some anonymization process

- Most well-developed treatment of the concept of anonymization in regulatory guidance available today is from an opinion of the EU's Article 29 Data Protection Working Party [2014]
- The Working Party breaks down anonymization into protection from three types of attacks on unregulated (publicly released) data: linkability, singling out, and inference

Images by Midjourney

Art. 29 WP general notions of attacks on released data

What is singling out?

- The existing A29WP guidance [2014] interprets singling out as the ability to 'isolate' an individual in the data:
 - To identify a set of attributes (or their function) that distinguishes an individual from all other individuals in the data underlying a given data release
- The guidance also lists some privacy enhancing technologies and whether they are assessed to protect against singling out

	Is Singling out still a risk?	Is Linkability still a risk?	Is Inference still a risk?
Pseudonymisation	Yes	Yes	Yes
Noise addition	Yes	May not	May not
Substitution	Yes	Yes	May not
Aggregation or K-anonymity	No	Yes	Yes
L-diversity	No	Yes	May not
Differential privacy	May not	May not	May not
Hashing/Tokenization	1 05	Yes	May not

Singling out = Isolation ?

Adversary's goal: Given M(X) output predicate q matching exactly 1 row in X

Definition attempt: M is secure against singling out if no adversary can isolate a row except with very small probability (over coins of X, M, A)

- q matches a 1/365 fraction of the universe $Pr[q^* \text{ isolates a row}] = \left(\frac{1}{365}\right) \left(1 - \frac{1}{365}\right)^{365-1} \times 365 \approx 0.37$
- Can trivially isolate without seeing M(X) and succeed with prob. $\approx 37\%$

- q matches a 1/365 fraction of the universe. $Pr[q^* \text{ isolates a row}] = \left(\frac{1}{365}\right) \left(1 - \frac{1}{365}\right)^{365-1} \times 365 \approx 0.37$
- Can trivially isolate without seeing M(X) and succeed with prob. $\approx 37\%$

- q matches a 1/n fraction of the universe. $\Pr[q^* \text{ isolates a row}] = \left(\frac{1}{n}\right) \left(1 - \frac{1}{n}\right)^{n-1} \times \approx \frac{1}{e} \approx 0.37$
- Can trivially isolate without seeing M(X) and succeed with prob. $\approx 37\%$

Can we fix the isolation criterion while preserving its spirit?

When is isolation non-trivial?

• Predicate q with Pr[q(x) = 1] = w isolates with probability $nw(1 - w)^{n-1}$

A baseline: $nw(1-w)^{n-1}$

- Idea: singling out happens when A improves significantly over the baseline
- "Born 10/23" in a dataset of 365 birthdates:
 - Attacker succeeds w.p. 37% doable even without access to data
 - Attacker succeeds w.p. 99% non-trivial
- "Vegan Colombian 27-year old epidemiologist, practices capoeira, loves knitting, and fluent in Dutch and Japanese"
 - Attacker succeeds with even 1% success probability non-trivial

Security against predicate singling out [Cohen N 20]

Definition (informal): M is secure against predicate singling out attacks if there does not exist D, A s.t.

 $\Pr_{X,M,A}[A \text{ isolates with } q \text{ of weight} = negl(n)] \gg negl(n)$

PSO security allows useful mechanisms

Counting mechanism

$$X \implies M_{\#g} \implies \#x \in X \text{ satisfying } g$$

• E.g., how many people in the dataset are diabetic?

• Theorem:
$$M_{\#g}$$
 is PSO secure

Does security against PSO self-compose?

PSO secure individually

Is joint mechanism PSO secure?

Theorem [CN 20]: PSO security does not self-compose

Proof 1 utilizes $\ell = \omega(\log n)$ counting mechanisms

Proof 2 utilizes $\ell = 2$ mechanisms

Are DP and k-anonymity PSO secure?

- Theorem (informal) [CN20]: if M is d.p. then M is PSO secure
- Proof: via a connection to generalization properties of differential privacy [Dwork, Feldman, Hardt, Pitassi, Reingold, Roth '15, ...]
- Theorem (informal) [CN 20]: k-anonymity typically enables predicate singling out

• Proof: demonstrates that typically the k-anonymizer would do the hard work for the attacker, needs to be complemented with a trivial attacker (using leftover hash lemma)

Why should we care?

 PSO security is not the same as the GDPR notion of singling out!

- Does this mean that the use of DP satisfies the GDPR requirement wrt singling out?
- Does this mean that the use of k-anonymity does not satisfy the GDPR requirement wrt singling out?

Let's review our modeling assumptions

• Design choices for security against predicate singling out:

- Very likely weaker than what GDPR regulators had in mind for singling out
- Failure to protect against predicate singling out very likely implies failure to protect against GDPR singling out

A "legal theorem" for singling out

Back to the Art. 29 Working Party assessment

	Is Singling out still a risk?	Is Linkability still a risk?	Is Inference still a risk?
Pseudonymisation	Yes	Yes	Yes
Noise addition	Yes	May not	May not
Substitution	Yes	Yes	May not
Aggregation or K-anonymity	No	Yes	Yes
L-diversity	No	Yes	May not
Differential privacy	May not	May not	May not
Hashing/Tokenization	Yes	Yes	May not

Summary: Do machine learning systems meet the requirements of legal privacy standards?

• Difficulty in answering the question: significant gaps between regulatory and technical conceptions of privacy

- Much work needed towards bridging CS and privacy law, beyond anonymization concepts:
 - Need strategies for translating regulatory requirements into technical requirements that can be implemented in systems
 - Example privacy concepts from the regulation that need careful technical treatment: data deletion, statistical purposes, opt out, consent, ...
 - Example privacy concepts from the technical literature that need to be embedded in regulation: composition, privacy budget, ...